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Abstract—In this paper, we first introduce a variational for-
mulation of the Unit Commitment (UC) problem, in which
generation and ramping trajectories of the generating units are
continuous time signals and the generating units cost depends
on the three signals: the binary commitment status of the
units as well as their continuous-time generation and ramping
trajectories. We assume such bids are piecewise strictly convex
time-varying linear functions of these three variables. Based on
this problem derive a tractable approximation by constraining
the commitment trajectories to switch in a discrete and finite set
of points and representing the trajectories in the function space
of piece-wise polynomial functions within the intervals, whose
discrete coefficients are then the UC problem decision variables.
Our judicious choice of the signal space allows us to represent cost
and constraints as linear functions of such coefficients; thus, our
UC models preserves the MILP formulation of the UC problem.
Numerical simulation over real load data from the California ISO
demonstrate that the proposed UC model reduces the total day-
ahead and real-time operation cost, and the number of ramping
scarcity events in the real-time operations.

Index Terms—Unit commitment, generation trajectory, ramp-
ing trajectory, ramping cost, continuous-time function space,
mixed-integer linear programming.

I. INTRODUCTION

THE important task of a functional electricity market

is not only to schedule generating units to supply the

load considering their inherent capacity limitations, but also

taking into account their limits in ramping up and down and

follow the vagaries of the load profile. The market clearing is

handled by solving the unit commitment (UC) problem which

schedules the most economic set of generating units on an

hourly basis, to meet the hourly forecasted load of the next day.

The current UC practice has worked well for compensating the

variability and uncertainty of load in the past. However, this

practice is starting to fall short, as increasing renewable energy

resources add variability to the system and large ramping

events occur much more frequently [1]–[4].

Ramping events and constraints are inter-temporal

continuous-time mathematical objects. The natural implication

of the current hourly UC practice is that, within the hour,

generating units shall follow a linear ramp from one value

to the next. Intuitively, the linear ramping does not fully

capture the prior information about sub-hourly variations of
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the net-load and one must expect deviation which will have

to be handled in the real-time operation [5]. If this short-term

deviation is beyond the coverage of the hourly day-ahead

dispatch decisions, the short-term operations may be left with

sufficient capacity but without ramping capability to respond

to sub-hourly net-load variations, as referred to ramping

scarcity events by multiple ISOs [6], [7], with obviously

undesirable economic and security consequences.

With the increasing critical demand for ramping capacity,

many believe that generating units must be remunerated ex-

plicitly not only for their capacity but also for their ramping

capability, in order to stimulate competition and compensate

the additional wear and tear cost that generating units incur due

to more frequent ramping [8], [9]. However, there is disagree-

ment on how to do so in the most effective fashion. There have

been notable research efforts on developing new operation

models, market mechanisms and services to better taking

care of renewable generation ramping and compensating the

resources for providing the additional ramp. For example, in

[10], a security-constrained UC algorithm was developed that

takes into account the intermittency and volatility of wind

power generation. A day-ahead UC model with stochastic

security was formulated in [11] which is capable of accounting

for non-dispatchable and variable wind power generation. A

methodology is proposed in [12] to determine the required

level of various reserves in a power system with a high

penetration of wind power. A formulation is developed in

[13] that models the dynamic ramping and startup costs of

generating units in the UC problem. An attempt is made in

[14] to model the power trajectory of thermal generating units

as a piecewise linear function, and calculate the ramping cost

as a proportion of the energy produced in the ramping process.

Most recently, the Midcontinent ISO (MISO) and the Cal-

ifornia ISO (CAISO) have proposed new flexible ramping

products to address this operational challenge. In the MISO,

the flexible ramping product is designed to cover the net-load

uncertainty in the next 10 minutes [6], [15]. In the CAISO, the

flexible ramping product is designed to provide load following

flexibility for the next 5 minutes and may look ahead several

intervals [7], [16]. In [17], an optimization-based model is used

to evaluate the ramping capability requirement considering

both security and economics. In [18], a deterministic ramping

capability model with transmission constraint is proposed to

ensure its deliverability. In [19], both the deterministic and

stochastic models are evaluated in designing the market for

flexible ramping products. In [20], a robust economic dispatch

model is developed with ramping capability requirement and

compared with the deterministic model. A stochastic day-
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ahead scheduling model is developed in [21], where the

flexible ramping product is scheduled in the day-ahead for

managing the variability of renewable generation. However,

defining new ramping services, like the flexible ramping

product, without incorporating additional information about

sub-hourly ramping of the net-load complicates the market

structure, and raises questions about what is the reasonable

level of cost allocation on these new market products.

Our hypothesis in this work is that a crucial bottleneck lies

in the prevalent representation of the scheduling decision space

in the UC problem, and the structure of the generating units’

cost functions in the day-ahead operation. In the current UC

practice, the generating units only bid and get compensated for

energy generation. The UC decision space includes only hourly

commitment decision points and hourly generation schedules,

which form a piecewise constant generation trajectory for each

generating unit. These piecewise constant trajectories are a

zero-order approximation of the higher-order continuous-time

trajectories that correspond to the actual UC problem decision

space. In addition, a continuous-time trajectory has potentially

infinite derivatives that could be chosen as part of the opti-

mization and, if the derivatives was taken into consideration

and appropriately priced, it could alter the priority given to

different units in the schedule.

In fact, the real-time load deviation results from two kinds

of error in day-ahead load profile: 1) error due to the imperfect

forecast, 2) error due to the day-ahead load profile approxi-

mation. The main goal of our proposed model is to reduce

the second kind of error, capturing more accurately the infor-

mation available about the net-load evolution in time in the

day-ahead operation, while revealing in the commitment stage

the potential operational flexibility of generating units that can

have significant impact on the day-ahead operation solution.

A more flexible generation trajectory model taps on additional

sub-hourly ramping flexibility of generating units that is not

captured by current UC formulation. In order to address the

increased ramping demand, instead of limiting the decision

space to the commitment state and generation trajectory, it

would be advantageous to also include the first derivative of

the generation trajectory, i.e. the ramping trajectory, as the

decision variable and among the degrees of freedom, opening

the door to receiving competitive offers that capture the joint

cost of generation and of generation ramping at each point.

Our idea, in a nutshell, is to change the UC formulation

in two ways: 1) expanding the decision space by modeling

generation trajectories with piecewise polynomial functions of

degree 3, and defining the corresponding ramping trajectories

with piecewise polynomial functions of degree 2, which offer

sufficient flexibility to match the sub-hourly variations of

demand; 2) generalizing the generating units operation cost

function as continuous-time convex function of both gener-

ation value and the ramp. While considering higher order

polynomial expansions would be a simple generalization of

our idea, using polynomials of degree three allows us to

constrain the decision space to have not only continuous

generation but also continuous ramping trajectories, while

harnessing additional degrees of freedom that the current UC

problem ignores of choosing.

Our numerical results in Section VI are promising and sug-

gest that we can, indeed, reduce real time and total operation

costs, supporting the intuition that there is an economic benefit

in curbing decision errors that are entirely predictable and

that are simply due to a poor approximation of the net-load

forecast. But the numerical simulations are limited and we will

need further analysis to determine if we perform uniformly

better, considering the ramping products and other operation

stages in the cost to address the sub-hourly variations.

The rest of the paper is organized as follows: in Section II,

we propose that the UC problem is originally a constrained

variational problem, and present a function space model to

convert the variational problem to a discrete-time optimization

problem. We then propose in Section III to use Bernstein

polynomials to approximate the continuous-time UC decision

space. The generalized operation cost function of generating

units is developed in Section IV. The proposed UC model is

presented in Section V. The numerical simulations using the

CAISO’s net-load data is presented in Section VI, and finally

the conclusions are discussed in Section VII.

II. CONTINUOUS-TIME UNIT COMMITMENT PROBLEM

We consider a day-ahead electricity market setting in which

a set of K generating units compete to sell continuous-

time generation trajectory Gk(t) forming a vector G(t) =
(G1(t), . . . , GK(t))T and supply the forecasted load pro-

file N(t) over the day-ahead operating horizon T at mini-

mum cost, subject to prevailing constraints of the generat-

ing units, including capacity, ramping and minimum on/off

time constraints. Along with the generation trajectories, the

dispatch decisions determine also the units ramping trajec-

tories G
′(t) = (G′

1(t), . . . , G
′
K(t))T . The generating units

also have a commitment variable Ik(t) forming the vector

I(t) = (I1(t), . . . , IK(t))T that is a step from 0 to 1 when

the unit is started up, and from 1 to 0 when the unit is

shut down. Let us also assume that the generating unit k

expresses a cost function Ck(Gk(t), G
′
k(t), I

′
k(t); t) such that

Ck(Gk(t), G
′
k(t), I

′
k(t); t)dt is the incremental cost the unit

experiences for generating the power Gk(t) with a slope G′
k(t)

at time t, plus possible costs associated with the change in state

I ′k(t), such as startup and shutdown cost. We will assume that

the cost function has the following two contributions:

Ck(Gk(t), G
′
k(t), I

′
k(t); t) = CI

k(I
′
k(t); t)

+ C
G,G′

k (Gk(t), G
′
k(t); t), (1)

where the first term is:

CI
k(I

′
k(t); t) = max(c(SU)k (t)I ′k(t),−c(SD)k (t)I ′k(t)), (2)

and represents the startup and shutdown costs, while

C
G,G′

k (Gk(t), G
′
k(t)) is a convex function with respect to the

pair (Gk(t), G
′
k(t)); both terms are function of the time as

well. In (2), c(SU)k and c(SD)k are respectively the startup and

shutdown costs of generating unit k.

Ideally, the continuous-time generation, ramping and com-

mitment variables Gk(t), G′
k(t), Ik(t) can change in any

instant of time t ∈ T giving the ultimate flexibility to the

generation fleet to match the load and thus resulting in the truly
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optimal solution for the UC problem. In terms of the binary

commitment variable, this means that the units are flexible to

turn on and off on at any time instant t ∈ T such that the

minimum on and off time constraints are met. Thus the Ik(t)
can be expressed as a sum of unit step functions as follows:

Ik(t) =

Hk
∑

h=1

(

u(t− t(SU)k,h )− u(t− t(SD)k,h )
)

, (3)

where Hk is the total number of startup/shutdown cycles of

the generating unit k over T , and t(SU)k,h and t(SD)k,h respectively

denote the times when the unit k starts up and shuts down in

cycle h. In this representation, the times t(SU)k,h and t(SD)k,h are

the decisions variables of the UC optimization problem. The

derivative of the commitment variable becomes:

I ′k(t) =

Hk
∑

h=1

(

δ(t− t(SU)k,h )− δ(t− t(SD)k,h )
)

, (4)

where δ(t) is Dirac delta function. The resulting continuous-

time UC problem for the day-ahead market clearing is a con-

strained variational problem in nature, expressed as follows:

min
K
∑

k=1

∫

T

Ck(Gk(t), G
′
k(t), I

′
k(t))dt (5)

s.t.

K
∑

k=1

Gk(t) = N(t) ∀t ∈ T (6)

GkIk(t) ≤ Gk(t) ≤ GkIk(t) ∀k, t ∈ T (7)

G′
kIk(t) ≤ G′

k(t) ≤ G
′

kIk(t) ∀k, t ∈ T (8)

t(SD)k,h − t(SU)k,h ≥ T (on)

k ∀k, h, t ∈ T (9)

t(SU)k,h+1 − t(SD)k,h ≥ T (off)

k ∀k, h, t ∈ T (10)

where T (on)

k and T (off)

k are the minimum on and off time

limits of the generating unit k. The objective in (5) is to

minimize the total continuous-time cost of generating units

over the scheduling horizon T , subject to the continuous-

time load-generation balance constraint (6), the continuous-

time generation capacity and ramping constraints in (7) and

(8), and the minimum on/off time constraints in (9) and (10).

The ideal infinite flexibility of units to change generation,

ramping and commitment status assumed in (5) would result

in an informationally complex and computationally intractable

variational problem (1)-(10). To overcome this impasse, we

need to covert the variational problem to a discrete op-

timization problem, where the continuous-time trajectories

and uncountable set of commitment options are respectively

approximated with finite countable continuous variables and

countable binary variables over the scheduling horizon, form-

ing a discrete-time mixed-integer optimization problem.

A. Load Approximation

Given past observations of the net-load during previous

periods in which the load trajectories are observed with high

resolution during comparable seasons and time-horizons, it

is reasonable to build a statistical model considering the

realizations as samples of a stochastic process. Let the roman

letter N(t;ω) denote a realization of such process, where ω

is the index of the particular outcome in the sample space of

load trajectories Ω. Assume that during T , except for a small

residual error, all forecasts lie on a countable and finite signal

space of dimensionality P , spanned by a set of bases functions

e(t) = (e1(t), . . . , eP (t))
T , that is:

N(t) = N
T
e(t) + εN (t) (11)

where we indicate with N = (N1, . . . , NP )
T the coordinates

of the approximation onto the subspace spanned by e(t).
The approximation with the smallest Frobenius norm for the

error would be to choose N
T
e(t) as the orthogonal projection

of N(t) onto the space spanned by e(t). By small residual

error we mean that the residual uncertainty on the load is

the dominant source of incongruence between the day-ahead

UC schedule and the real-time operation decision, however we

assume in this paper that there exist an algorithm that provides

this mapping and leave further analysis to future work1.

The highlight here is that we can decompose any generation

trajectory also into a component that lies in the subspace

spanned by e(t) and in a component orthogonal to it, i.e.:

Gk(t) = Gke(t) + εGk
(t). (12)

Considering this fact, the continuous-time load generation

balance constraint in (6) is equivalent to:

N =
K
∑

k=1

Gk,

K
∑

k=1

εGk
(t) = εN (t). (13)

Because the approximation error is buried in the uncertainty

about the net-load, the solution of the variational problem can

be further approximated by assuming εN (t) = 0, which also

implies that, without further loss of optimality, we can pick

the generation trajectories in the subspace spanned by e(t):

Gk(t) = Gke(t). (14)

It becomes customary to define the continuous-time ramping

trajectory of generating unit k as:

G′
k(t) = Gke

′(t). (15)

The problem here is the choice of the bases functions e(t)
that not only represents a good approximation of N(t), but also

is helpful in: 1) the enforcement of continuous-time generation

capacity and ramping constraints, 2) the commitment of the

units through the integer variables, and 3) the definition of

ramping trajectory and the associated cost. In the next Section,

we propose to use the cubic splines to discretize the decisions

on the continuous-time generation trajectory.

1Let the roman letter N(t;ω) denote a realization of the random net-
load process, where ω is the index of the particular outcome in the sample
space of load trajectories Ω. Let MSEN =

∫
T
E{‖N(t;ω)−N(t)‖2}dt.

A reasonable heuristic would be requiring that: supN(t)

∫
T
|εN (t)|2dt �

MSEN � inf
∫
T
|N(t)|2dt, which means that the function space must

include approximations for N(t) that entail an error signal whose Frobenius
norm is alway much smaller than the forecast mean-squared error MSEN ,
which is small itself relative to the forecast. Since MSEN is bounded by the
conditional variance of N(t;ω) given all the history we use to forecast it, in
general, with reasonable regularity conditions on the functions N(t), bases
e(t) can be found that, as P grows, leave a vanishing residual error.
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III. DISCRETE-TIME UC DECISION SPACE

In the current electricity market practice, the commitment

variables I(t) are limited to hourly changes, reducing the num-

ber of switching options to discrete (hourly) times t0, . . . , tI .

Dividing the horizon T in I intervals Ti = [ti, ti+1),→ T =
∪I−1
i=0 Ti, the continuous-time commitment variable is:

Ik(t) =
I−1
∑

i=0

Ik,i[u(t− ti)− u(t− ti+1)] (16)

=
I−1
∑

i=0

(Ik,i − Ik,i−1)u(t− ti) (17)

and is linear with respec to Ik(ti) ≡ Ik,i which are the binary

decision variables of the UC problem, and Ik,−1 is given for

all generating units. Even though the switching variables are

constrained to remain constant during the hourly intervals, the

continuous-time generation and ramping trajectories should be

flexible to change between two consecutive hourly schedules.

The hourly change of generating units commitment status

suggests the idea of using splines functions as a basis in

each sub-interval Ti to represent the whole scheduling horizon.

There are several different family of splines that can be used

to approximate the continuous-time trajectory (space) of a

data set with the desired level of accuracy, as the order of

the basis grows. Among the polynomial splines, the Bernstein

polynomials of degree Q are defined as:

bq,Q(t) =

(

q

Q

)

tq(1− t)Q−qΠ(t), t ∈ Ti (18)

where Π(t) = u(t−1)−u(t) is the rectangular pulse equal to

1 in [0, 1) and zero else, and q = 0, . . . , Q. Note that the space

spanned by Bernstein polynomials of degree Q′ is a subspace

of the space spanned by Bernstein polynomials of any degree

Q > Q′ and, therefore, there exist a (Q + 1) × (Q′ + 1)
linear mapping between the coefficients of a signal in the basis

of order Q′ and those in the basis of order Q. In particular,

for Q′ = 0 when the only basis vector is b0,0(t) = Π(t) the

(Q+ 1)×1 linear map is the all one vector since:

Q
∑

q=0

bq,Q(t) =

Q
∑

q=0

(

q

Q

)

tq(1− t)Q−qΠ(t) = Π(t). (19)

When we are interested in the piecewise approximation of

a set of data points, an important feature of the Bernstein

polynomials is that they can be utilized to more easily impose

smoothness conditions not only at the break points but also

inside the interval of interest, working only on the coefficients

of the Bernstein spline expansion. In addition, the convex hull

property of the Bernstein polynomials enables us to enforce the

capacity and ramping constraints on the continuous-time gen-

eration trajectory by capping the corresponding coefficients.

Specifically, for each of the intervals Ti that are used to

control the switching point, we construct a subset of basis

function using the Bernstein Polynomials of order Q. So, the

basis functions e(Q)(t) spanning the whole horizon T contains

P =(Q+1)I functions with the components defined as follows:

e
(Q)
i(Q+1)+q

(t) = bq,Q

(

t− ti

ti+1 − ti

)

, (20)

for i = 0, . . . , I−1; q = 0, . . . , Q. To reduce the notation, we

define p ≡ i(Q+1)+q, where p goes from 0 to (Q+1)I .

Hence, the continuous-time load profile N(t) over the the

operating horizon is such that:

N(t) = N
T
e
(Q)(t) + εN (t)

=
P−1
∑

p=0

Npe
(Q)
p (t)+εN (t) (21)

Given N(t) is continuous in T , from Weierstrass approxi-

mation theorem follows that for any ε > 0 there exist a positive

Q′ such that for all t∈T and for all Q ≥ Q′ in (20), we have

|N(t)−N
T
e
(Q)(t)| < ε (22)

which states that the expansion on Bernstein polynomials for

sufficiently large Q converges to N(t). In the following, we

assume that for a large enough I the order Q = 3 is sufficient

to render the approximation error negligible and, from now

on, we assume that εN (t)=0 and Q = 3.

A. Load and Generation piece-wise polynomial expansion

using Bernstein Spines of degree 3

Here, we propose to use the cubic spline function space

of Bernstein polynomials of degree 3 for approximating

continuous-time load profile. Cubic splines interpolate points

with minimum curvature while providing additional flexibility

to fit the continuous-time load variations. Correspondingly, the

continuous-time generation trajectory is also modeled through

the Bernstein polynomials of degree 3.

The day-ahead load profile in the 4I-dimensional function

space of Bernstein polynomials of degree 3, which can be

expressed as in (21) for Q = 3:

N(t) = N
T
e
(3)(t)=

P−1
∑

p=0

Npe
(3)
p (t) (23)

where N is the 4I-dimension vector of coefficients. The

continuous-time generation trajectory of units over the day-

ahead scheduling horizon can be expressed in the function

space of Bernstein polynomials of degree 3 as follows:

Gk(t) = G
T
k e

(3)(t)=
P−1
∑

p=0

Gk,pe
(3)
p (t) (24)

where Gk is the 4I-dimensional Bernstein coefficients vector

of the generation trajectory of unit k.

1) Definition of Ramping Trajectory: One of the impor-

tant properties of the Bernstein polynomials states that the

derivatives of the Bernstein polynomials of degree Q can be

expressed as the degree of the polynomial, multiplied by the

difference of two Bernstein polynomials of degree Q−1 [22].

Specifically, for degree 3 we can write:

b′q,3(t) = 3
(

bq−1,2(t)− bq,2(t)
)

, q = 0, 1, 2. (25)

This important property allows us to define the continuous-

time ramping trajectory of generating unit k in a space
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spanned by Bernstein polynomials of degree 2 as follows:

G′
k(t) = G

′T
k e

(2)(t)=
P−1
∑

p=0

G′
k,pe

(2)
p (t) (26)

where G
′
k is the vector of Bernstein coefficients of the

continuous-time ramping trajectory, which can be expressed

in terms of coefficients of the generation trajectory as follows:

G
′
k = OGk. (27)

where O is the 3I×4I linear matrix relating the derivatives

of Bernstein polynomials of degree 3 with the Bernstein

polynomials of degree 2.

2) Continuity: The continuity of the generation trajectory

at the edge points of the intervals is guaranteed by imposing

appropriate constraints on the coefficients from adjacent inter-

vals. The C0 continuity requires the continuity of generation

trajectory at the edges, i.e. Gk,4i+3 = Gk,4(i+1). The C1

continuity is assured by imposing the constraints:

Gk,4i+3=Gk,4(i+1),

Gk,4i+3 −Gk,4i+2=Gk,4(i+1)+1 −Gk,4(i+1), ∀i. (28)

Note that the C1 continuity of generation trajectory in (28)

results in C0 continuity of ramping trajectory at the edge

points of the intervals, i.e., G′
k,3(i+1) = G′

k,3i+2. In essence,

imposing C1 continuity implies that the generation trajectory

effectively lies in a function space with dimensionality 2I .

3) Convex Hull Property: The other useful property of

Bernstein polynomials is that the continuous-time generation

and ramping trajectories satisfy the convex hull property [22],

namely that the continuous-time trajectories Gk(t) and G′
k(t)

in interval i will never be outside of the convex hull of the

control polygon formed respectively by the Bernstein points

Gk and G
′
k. Accordingly, the lower and upper bounds of the

continuous-time generation and ramping trajectories within the

interval i can be respectively represented by the associated

Bernstein coefficients in (29)-(32).

min
ti≤t≤ti+1

{Gk(t)} ≥ min
q=0,1,2,3

{Gk,4i+q}, (29)

max
ti≤t≤ti+1

{Gk(t)} ≤ max
q=0,1,2,3

{Gk,4i+q}, (30)

min
ti≤t≤ti+1

{G′
k(t)} ≥ min

q=0,1,2
{G′

k,3i+q}, (31)

max
ti≤t≤ti+1

{G′
k(t)} ≤ max

q=0,1,2
{G′

k,3i+q}, ∀i. (32)

4) Commitment Variable Model using Bernstein Polynomi-

als: In (16), we represented the continuous-time commitment

variables using two steps functions, i.e. the rectangular func-

tion, in each interval. (16) can be equivalently written as:

Ik(t) =
I−1
∑

i=0

Ik,iΠ

(

t− ti

ti+1 − ti

)

, (33)

where we can recognize Π
(

t−ti
ti+1−ti

)

as being a special case of

our basis construction for Q = 0, i.e. e
(0)
i (t) = b0,0

(

t−ti
ti+1−ti

)

for i = 0, . . . , I − 1. The piece-wise constant continuous-time

commitment variable can be also expressed in the function

space of Bernstein polynomials of degree 3 as follows:

Ik(t) = I
T
k e

(3)(t)=

P−1
∑

p=0

I
(3)
k,pe

(3)
p (t), (34)

where Ik is the coefficients vector of the generation trajectory

of unit k in the function space of Bernstein polynomial of

degree 3. The four Bernstein coefficients of Ik(t) in each

interval equal to 1, if the unit is committed in that period,

and equal to zero if it is not committed. Thus, the two

representations for Ik(t) in (33) and (34) are equivalent. The

C1 continuity of generation trajectory in (28) implies that

the last two coefficients in each interval are dependent to the

commitment variable at the subsequent interval, while the first

two coefficients are dependent to the commitment variable at

the same interval. Thus, the four Bernstein coefficients in each

interval i are defined as follows:

I
(3)
k,4i = I

(3)
k,4i+1 = Ik,i, I

(3)
k,4i+2 = I

(3)
k,4i+3 = Ik,i+1. (35)

IV. GENERALIZED OPERATION COST FUNCTION

As presented in (1), the operation cost of generating units is

generally a function of the generation and ramping trajectories

of generating units, and includes the startup/shutdown cost

term. Here, we first derive the expression for startup and

shutdown cost term. We then leverage the continuous-time

generation and ramping trajectory models in (24) and (26)

to define the joint generation and ramping cost function.

A. Startup/Shutdown Cost

The cost term CI
k (I

′
k(t); t) in (2), equals to startup cost

when there is a positive change in commitment variable, i.e.

I ′k(t) ≥ 0, and it equals to shutdown cost when I ′k(t) ≤ 0.

Note that, using (16), I ′k(t) is expressed as follows

I ′k(t) =
I−1
∑

i=0

(Ik,i − Ik,i−1) δ(t− ti). (36)

The startup and shutdown cost term of generating unit

k over the day-ahead horizon T is derived by integrating

CI
k (I

′
k(t); t) and substituting the expressions for I ′k(t):

∫

T

CI
k (I

′
k(t); t)=

∫

T

I−1
∑

i=0

δ(t−ti)max
(

c(SU)k (Ik,i−Ik,i−1),

− c(SD)k (Ik,i−1−Ik,i)
)

dt =

=
I−1
∑

i=0

max
(

c(SU)k (Ik,i−Ik,i−1),−c(SD)k (Ik,i−1−Ik,i)
)

(37)

The max (·) term in (37) is nonlinear, so we substitute it

with the positive variable Cδ
k,i that is linearly constrained as:

Cδ
k,i ≥ c(SU)k (Ik,i − Ik,i−1) , (38)

Cδ
k,i ≥ c(SD)k (Ik,i−1 − Ik,i) , ∀k, ∀i. (39)
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B. Joint Generation and Ramping Cost Function

The introduction of continuous-time ramping trajectory

in (26) provides a natural way to monetize the ramp-

ing capacity provided by the generating units in the day-

ahead market. Here, we define the instantaneous joint energy

generation and ramping cost function of generating units,

C
G,G′

k (Gk(t), G
′
k(t)), which is a function of generation tra-

jectory and ramping trajectory variables of units, and thus a

surface in the three-dimensional space. The cost also depends

to change of commitment variable. We assume that the joint

cost function is increasing with respect to both of the variables.

Extending the current quadratic generation cost function of

generating units, a choice for the instantaneous joint energy

generation and ramping cost function of generating unit k is

a elliptic paraboloid of form:

C
G,G′

k (Gk(t), G
′
k(t))=a(Gk(t)+b)2+c(G′

k(t)+d)2

−acρ(Gk(t)+b)(G′
k(t)+d) (40)

defined for Gk ≤ Gk(t) ≤ Gk and G′
k ≤ G′

k(t) ≤ G′
k,

and a, b, c, d, ρ are constant coefficients. The task here is to

linearize the quadratic surface cost function so the UC problem

would remain linear with respect to the variables. Various

methods are developed in [23] for obtaining a piecewise linear

approximation of general functions of two variables, all of

which introduce additional binary variables in the model. We

leverage the continuity and convexity properties of elliptic

paraboloid and linearize the cost function without introducing

additional binary variables.

As shown in Fig. 1, we start linearization of joint cost

function by tiling the plain created by Gk(t) and G′
k(t). For

this, let us divide the generation capacity of generating unit

k, i.e. the vertical coordinate in Fig. 1, to Nk sections using

intermediate generation points g0 = Gk, g1, · · · , gNk
= Gk.

Let us also divide the up (positive) ramping capacity of gener-

ating unit k to J+
k sections using intermediate ramping points

g′+0 =0, g′+1 , · · · , g′+
J

+

k

=G′
k, and the down ramping capacity

to J−
k sections using points g′−0 =0, g′−1 , · · · , g′−

J
−

k

=G′
k. This

would divide the up ramping quarter-plane to NkJ
+
k tiles, and

the down ramping quarter-plane to NkJ
−
k tiles.

( )kG t

( )kG t′
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+
′
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+

−
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Fig. 1. Generation-ramping plane tessellation

Defining positive continuous-time auxiliary generation vari-

ables wk,n,j(t) to model the generation at each tile of the half

plane, the generation trajectory of unit k can be written as:

Gk(t)=GkIk(t)+

Nk
∑

n=1

J
+

k
∑

j=−J
−

k

wk,n,j(t). (41)

Similarly, defining the positive continuous-time auxiliary

ramping variables w′
k,n,j(t) for j=−J−

k , . . . , J+
k , the ramping

trajectory G′
k(t) can be written as follows:

G′
k(t) =

Nk
∑

n=1

J
+

k
∑

j=1

w′
k,n,j(t)−

Nk
∑

n=1

−1
∑

j=−J
−

k

w′
k,n,j(t). (42)

The auxiliary variables wk,n,j(t), w
′
k,n,j(t) are constrained

in the generation-ramping plain by:

0 ≤ wk,n,j(t) ≤ gk,n+1 − gk,n, ∀k, ∀n, ∀j (43)

0 ≤ w′
k,n,j(t) ≤ g′−k,j+1 − g′−k,j , ∀k, ∀n, ∀j. (44)

Using the change of variables to auxiliary variables in (41)

and (42), the joint cost function (40) is linearized in terms of

the auxiliary variables as follows:

C
G,G′

k

(

Gk(t), G
′
k(t),Ik(t))=C

W,W ′

k

(

Wk(t),W
′
k(t),Ik(t))

=Ck

(

Gk,0
)

Ik(t)+

Nk
∑

n=1

J
+

k
∑

j=−J
−

k

(

ck,n,j(t)wk,n,j(t)+c′k,n,j(t)w
′
k,n,j(t)

)

(45)

where Wk(t) = (wk,n,j(t)) and W ′
k(t) = (w′

k,n,j(t)) are

the vectors of auxiliary generation and ramping variables

for all n, j; Ck

(

Gk, 0
)

is the cost of generating minimum

power at zero ramping, and ck,n,j(t) and c′k,n,j(t) are the

energy and ramping cost coefficients defined for the tiles

in the generation-ramping half plane of unit k. In order to

express the cost function in the Bernstein space, let us expand

the generation and ramping auxiliary variables in the space

spanned respectively by the Bernstein polynomials of degree

3 and degree 2 as follows:

wk,n,j(t)=(wk,n,j)
T
e
(3)(t)=

P−1
∑

p=0

wk,n,j,pe
(3)
p (t) (46)

w′
k,n,j(t)=(w′

k,n,j)
T
e
(3)(t)=

P−1
∑

p=0

w′
k,n,j,pe

(3)
p (t) (47)

where wk,n,j and w
′
k,n,j represent the vectors of the Bernstein

coefficients in interval i. Using (41) and (42), the coefficients

of the total generation and ramping trajectories are:

Gk = GkIk +

Nk
∑

n=1

J
+

k
∑

j=−J
−

k

wk,n,j , (48)

G
′
k =

Nk
∑

n=1

J
+

k
∑

j=1

w
′
k,n,j −

Nk
∑

n=1

−1
∑

j=−J
−

k

w
′
k,n,j . (49)
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Substituting the Bernstein expansions of the auxiliary vari-

ables and commitment variable in the cost function (45), and

integrating over the scheduling horizon T , we have:
∫

T

C
W,W ′

k

(

Wk(t),W
′
k(t),Ik(t))dt =

I−1
∑

i=0

[

Ck(Gk, 0)
3

∑

q=0

Ik,n,4i+q

∫

Ti

e
(3)
4i+q(t)dt

+

Nk
∑

n=1

ck,n,j,i

3
∑

q=0

wk,n,j,4i+q

∫

Ti

e
(3)
4i+q(t)dt

+

Nk
∑

n=1

c′k,n,j,i

2
∑

q=0

w′
k,n,j,3i+q

∫

Ti

e
(2)
3i+q(t)dt

]

(50)

where the cost coefficients ck,n,j,i ≡ ck,n,j(ti) and c′k,n,j,i ≡
c′k,n,j(ti) are constant in each interval i, and the integrals of

Bernstein basis functions of degree 2 and 3 are calculated as:
∫

Ti

e
(2)
3i+q(t)dt = Ti

∫ 1

0

bq,2(t)dt =
Ti

3
, q = 0, 1, 2 (51)

∫

Ti

e
(3)
4i+q(t)dt = Ti

∫ 1

0

bq,3(t)dt =
Ti

4
, q = 0, 1, 2, 3. (52)

Using the integrals (51), (52) and substituting Ik,n,4i+q from

(35), the joint energy generation and ramping cost function

of generating unit k over the day-ahead scheduling horizon,

C
G,G′

k,T (·), is expressed as follows:

C
W,W ′

k,T (Wk,W
′
k, Ik)=

I−2
∑

i=1

TiCk(Gk, 0)Ik,i

+Ck(Gk, 0)

(

T0Ik,0

2
+
TI−1Ik,I−1

2

)

+
I−1
∑

i=0

Ti

Nk
∑

n=1

ck,n,j,i

4

3
∑

q=0

wk,n,j,4i+q

+
I−1
∑

i=0

Ti

Nk
∑

n=1

c′k,n,j,i

3

2
∑

q=0

w′
k,n,j,3i+q., (53)

where Wk = (wk,n,j) and W
′
k = (w′

k,n,j) are respective

vectors of the coefficients of the auxiliary generation and

ramping variables for all n, j. If we choose to set the ramping

cost coefficients to zero, the cost function in (53) becomes

the classic cost function of units which is a function of only

generation trajectory.

V. THE PROPOSED UNIT COMMITMENT MODEL

In this section, we propose the UC formulation which

represents the discrete-time approximation of the variational

problem (5)-(8), using the representation of continuous-time

generation and ramping trajectories respectively in the function

spaces of Bernstein polynomials of degree 3 and 2 in (24)

and (26), over I intervals in the scheduling horizon T . In

particular, the continuous-time generation trajectories Gk(t)
is represented by the coefficients vector Gk. The continuous-

time ramping trajectory G′
k(t) is represented through (27) in

terms of the coefficients of generation trajectory as G
′
k =

OGk. The continuous-time binary commitment variable is

also represented using the coefficients Ik in (34). In the

following, we present the proposed discrete-time UC model

which is formulated as a mixed-integer linear programming

(MILP) problem on variables Gk and Ik.

1) Objective Function: As presented in the original varia-

tional problem (5), the objective of the UC problem is to min-

imize the total continuous-time operation cost of generating

units over the scheduling horizon, which is derived in terms

of the coefficients of commitment variables as well as auxiliary

generation and ramping variables in (53). Thus, the objective

function is formulated as the summation of the joint generation

and ramping cost function in (53) over all generating units

min
∑

K

CG
k,T (Gk,G

′
k, Ik). (54)

The objective function is subject to (38) and (39) which

govern the startup/shutdown cost in the objective function.

The relationship between the coefficients of generation and

ramping trajecotries with the associated auxiliary variables

is respectively presented in (48) and (49), while the relation

between the coefficients of generation and ramping trajectories

is presented in (27). The convex hull property of Bernstein

polynimals, explained in Section III.C, allows us to express

the continuous-time bounds on auxiliary variables in (43)-(44),

in terms of finite number of constraints on the coefficients as:

0 ≤ wk,n,j,4i+q ≤ gk,n+1 −gk,n, ∀k, n, q, j (55)

0 ≤ w′
k,n,j,3i+q ≤ g′k,j+1 −g′k,j , ∀k, n, q, j. (56)

2) Balance and Generation Continuity Constraints: The

discrete-time equivalent of the continuous-time load genera-

tion balance constraint in (6) is represented in (57), where the

Bernstein coefficients of generation trajectory of the generating

units sum up to balance the corresponding load coefficients.

In essence, unlike the current UC models where the units are

scheduled to balance the hourly samples of load, (57) would

schedule the continuous-time generation trajectory to balance

the continuous-time variations of net-load within the intervals,

as represented by the Bernstein coefficients. In addition, the

constraints (28) ensure the C1 continuity of the generation

trajectory over the scheduling horizon.

K
∑

k=1

Gk = N (57)

3) Generation Capacity and Ramping Constraints: As

mentioned in Section III.B, the convex hull property of Bern-

stein polynomials allow us to enforce the generation capacity

constraint in continuous-time by capping the Bernstein coef-

ficients of the generation trajectory as follows:

Gk ≥ GkIk (58)

Gk ≤ GkIk. (59)

The continuous-time ramping constraints can be applied in

a similar way by capping the Bernstein coefficients of the

continuous-time ramping trajectory of generating units in (26),

only two of which are independent in each interval due to the

C0 continuity of ramping trajectory. The ramping up and down

constraints for the first Bernstein coefficient of generation
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ramping trajectory at each interval, G′
k,3i, accounting for the

startup and shutdown ramp limits, are

G′
k,3i ≤G

′

kIk,(i−1) +G′(SU)
k (Ik,i − Ik,(i−1))

+Gk(1−Ik,i) ∀k, ∀i (60)

−G′
k,3i ≤G′

kIk,i +G′(SD)
k (Ik,(i−1) − Ik,i)

+Gk(1−Ik,(i−1)) ∀k, ∀i, (61)

where G′(SU)
k and G′(SD)

k respectively represent the startup and

shutdown ramp limits of generating unit k. The ramping up

and down constraints for the second Bernstein coefficient of

generation ramping trajectory, G′
k,3i+1, are

G′
k,3i+1 ≤ G

′

kIk,i ∀k, ∀i=0 . . . I−2 (62)

−G′
k,3i+1 ≤ G′

kIk,i + η(1−Ik,i+1) ∀k, ∀i=0 . . . I−2 (63)

where η is a sufficiently large constant and assures that the

constraint does not prevent the unit from turning off.

4) Minimum on/off Time Constraints: the minimum on

and minimum off time constraints of generating units are

formulated as follows:

i+T (on)

k
−1

∑

i′=i

Ti′Ik,i′ ≥ T (on)

k

(

Ik,i−Ik,(i−1)

)

(64)

i+T (off)

k
−1

∑

i′=i

Ti′ (1− Ik,i′) ≥ T (off)

k

(

Ik,(i−1)−Ik,i
)

(65)

where T (on)

k and T (off)

k represent the minimum on and off

times of generating unit k.

VI. NUMERICAL RESULTS

To analyze and compare the UC formulations we use the

data regarding 32 generating units included in the IEEE

Reliability Test System (RTS) [24] and load data from the

CAISO. In Cases 1 and 2, we respectively study and analyze

the results of running the current day-ahead (DA) UC model

and our proposed UC with continuous-time generation and

ramping trajectory models on the IEEE-RTS and CAISO load

data. In both cases, we also simulated the real-time (RT)

economic dispatch in five-minute intervals, which schedules

for the deviations of day-ahead dispatch from the real-time

five-minute load forecast data. We took the five-minute net-

load forecast data of CAISO for Feb. 2, 2015, scaled it down to

the original IEEE-RTS peak load of 2850MW, and generated

the hourly day-ahead load forecast where the forecast standard

deviation is considered to be %1 of the load at the time. The

two DA load profiles and their deviation from the RT load are

shown in Fig. 2.a) and Fig. 2.b) respectively. The impact of

solar generation on reducing the CAISO’s load during sunlight

and the resulting ramping events is obvious in Fig. 2.a).

The DA and RT simulation results for both cases are

summarized in Table I. In Table I, the DA operation cost in the

proposed UC model is increased by $5, 095.7, while the RT

operation cost is reduced by $10, 651.6 (%63) as compared

to Case 1, resulting in the total reduction of $5, 555.9 in

daily operation cost in Case 2. In Fig. 2.b), the piecewise

constant load profile used in traditional UC model leaves out
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Fig. 2. a) DA load profiles in Cases 1 and 2, b) RT deviation from
DA load profiles.

a substantial amount of net-load for RT operation. The net-load

presents several fast ramping events specially when the solar

generation starts to rise in the early morning and suddenly

drops during sunset. The substantial load deviation and several

fast ramping events causes the relatively high RT operation

cost for Case 1 in Table I. In addition, due to the lack of

ramping capacity in RT operation, 27 ramping scarcity events

are observed in Case 1; that is, the RT economic dispatch

becomes infeasible due to insufficient ramping capacity of

generation units, which reveals the inadequacy of the current

UC model in accounting the sub-hourly variations of net-load.

However, no violations of the power balance is observed in

the RT operation of Case 2, which demonstrates the ability of

the proposed UC model to effectively schedule the ramping

capability of units to cater to the fast ramping of the net-load.

TABLE I
SCHEDULING RESULTS

Case
DA Operation

Cost ($)
RT Operation

Cost ($)
Total DA and RT
Operation Cost ($)

RT Ramping
Scarcity Events

Case 1 471,130.7 16,882.9 488,013.6 27

Case 2 476,226.4 6,231.3 482,457.7 0

The continuous-time generation trajectories for two cases

are shown in Figs. 3, where the units are grouped to 9 groups

with various capacities, costs and characteristics. In Fig. 3.a),

the current hourly UC model provides a constant hourly

schedule for the generating units and results in a piecewise

constant generation trajectory. In Fig. 3.b), the proposed UC

model provides a continuous-time schedule for generating

units which efficiently utilizes their ramping capability to

follow the continuous-time variations of the net-load, while

leaving less energy to schedule in the RT operation. In Case

1, a total of twenty units are committed, while in the proposed

model in Case 2, additional five units are committed to secure

adequate ramping capacity in the hours 1-3 when there is a fast

ramp in the net-load. Moreover, in Case 2, the 197MW units
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Fig. 3. DA generation trajectory in a) Case 1, b) Case 2.

are not committed in the hours 16-24; instead the 100MW

units with more than twice the ramping capacity are kept

on to also supply the fast ramping of net-load caused by

solar generation during hours 6-16. This result highlights that

ramping scarcity events are observed partly due to the fact

that the set of online generation fleet does not provide enough

ramping capacity in order to supply the ramping requirements

of the net-load in real-time

The continuous-time ramping requirement of net-load and

its breakdown to the scheduled ramping trajectory of gen-

erating units are shown in Fig. 4. In Fig. 4, the proposed

UC model accounts for continuous-time ramping of load,

which manifest several sub-hourly spikes, and schedules the

generating units in day-ahead to deliver the continuous-time

ramping requirement of load in real-time operation.
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Fig. 4. Continuous-time ramping trajectory of units in Case 2

In order to evaluate the performance of our proposed model

in different loading and forecast error conditions, we repeated

the same Cases 1 and 2 in Figs. 5 for the CAISO’s load data

of the entire month of Feb. 2015, and also added the results

obtained from the traditional UC model with 48 half-hour

periods. From the scatter diagram in Fig. 5.a), we can clearly

see that our proposed UC model outperforms the other two

cases in terms of real-time and total operation cost reduction,

even compared to the half-hourly UC solution. Note that

the latter could have benefited from having twice the binary

variables for half-hourly commitment status changes, which

is prevented in this test for our model; this indicates that the

brute-force solution of increasing the number of scheduling

intervals is inferior compared to our solution. In addition, Fig.

5.b) reveals that our proposed UC model results in much fewer

ramping scarcity events.
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Fig. 5. Simulation of CAISO’s load of Feb. 2015, a) DA vs RT
operation costs, b) number of RT ramping scarcity events

Ramping Cost Consideration: With the joint energy gener-

ation and ramping cost function, assuming that the up/down

ramping cost coefficients equal to 10% of the highest in-

cremental cost of generating units, we solved the proposed

UC model without and with the joint cost function, for

the CAISO’s load data of Feb. 3, 2015. The DA operation

cost with the joint cost function rises up to $473, 469.2,

as compared to $470, 374.9 when we considered the classic

generation cost function. In order to compare the two cost,

we calculated the ramping cost afterwards using the same

ramp cost coefficients, which equals to $3, 639.3, resulting

in total cost of $474, 014.1 in the case in which we did not

integrate the joint cost in the UC problem. Hence, integrating

joint generation and ramping cost function in the UC problem

further reduces the system cost.

A. Computation Time

The computation time of simulating the day-ahead operation

of IEEE-RTS with 32 generating units for the CAISO load

data of Feb. 2, 2015, using the traditional 24-hour UC model,

48 half-hourly UC model, and the proposed function space-

based UC model are respectively 0.257s, 0.572s, and 1.369s,

while the upper bound on the duality gap is set to be zero.

2343



The study cases were solved using CPLEX 12.2 [25] on a

desktop computer with a 2.9GHz i7 processor and 16 GB of

RAM. Our proposed UC model has the same number of binary

variables as compared to the traditional 24-hour UC model, but

the reason for increased computation time is that it includes

additional continuous variables, and equality and inequality

constraints. The number of continuous generation variables is

increased from 1 to 4 in each interval for each generating

unit. The number of equality balance constraints is increased

from 1 to 4 equality constraints in each interval. The number

of inequality capacity and ramping constraints is increased

from 2 and 2, respectively to 8 and 6 constraints in each

interval for each generating unit. There are also additional two

constraints in each interval for each generating unit enforcing

the C1 continuity of the generation trajectory. However, having

the same number of binary variables is promising for large-

scale implementation of our proposed model. In fact, the

computation time of a MILP problem, due to the nature of

branch-and-cut algorithm, is almost an exponential function

with respect to the number of integer variables [26].

VII. CONCLUSION

We propose to approximate the continuous-time formulation

of the UC problem using a function space model, expanding

power trajectories on the basis of Bernstein polynomials of

degree 3 and suggest a new form for the market bids that

describe the joint generation and ramping cost, to promote

offers of greater flexibility in ramping from generating units.

The proposed model preserves the MILP structure of current

UC practice, with the same number of binary variables in

the problem. Our numerical results on CAISO’s real load

data show that the commitment and schedule of the units

in the proposed model is different from those of the current

practice and that the application of proposed UC model has

the potential of reducing significantly the number of ramping

scarcity events in the real-time operation and of reducing the

total operation costs. Not considered in this work is how

to appropriately tune the net-load forecasts and deal with

uncertainty in the proposed UC model, which are natural

extensions of the current framework.

REFERENCES

[1] M. R. Milligan, E. Ela, D. Lew, D. Corbus, and Y.-h. Wan, Advancing

wind integration study methodologies: implications of higher levels of

wind. National Renewable Energy Laboratory, 2010.
[2] M. Milligan, P. Donohoo, D. Lew, E. Ela, B. Kirby, H. Holttinen,

E. Lannoye, D. Flynn, M. OMalley, N. Miller et al., “Operating reserves
and wind power integration: an international comparison,” in proc. 9th

International Workshop on large-scale integration of wind power into

power systems, 2010, pp. 18–29.
[3] U. Helman, C. Loutan, G. Rosenblum, M. Rothleder, J. Xie, H. Zhou

et al., “Integration of renewable resources: Operational requirements and
generation fleet capability at 20% rps,” 2010.

[4] “Growing wind: Final report of the nyiso 2010 wind generation study,”
2010.

[5] M. Parvania and A. Scaglione, “Unit commitment with continuous-time
generation and ramping trajectory models,” IEEE Trans. Power Systems,
2015, to appear.

[6] N. Navid and G. Rosenwald, “Ramp capability product design for miso
markets,” White paper, July, 2013.

[7] L. Xu and D. Tretheway, “Flexible ramping products: Revised draft final
proposal,” 2012.

[8] S. A. Lefton and P. Besuner, “The cost of cycling coal fired power
plants,” Coal Power Magazine, pp. 16–20, 2006.

[9] N. Kumar, P. Besuner, S. Lefton, D. Agan, and D. Hilleman, “Power
plant cycling costs,” Contract, vol. 303, pp. 275–3000, 2012.

[10] J. Wang, M. Shahidehpour, and Z. Li, “Security-constrained unit com-
mitment with volatile wind power generation,” IEEE Trans. Power

Systems, vol. 23, no. 3, pp. 1319–1327, 2008.
[11] F. Bouffard and F. Galiana, “Stochastic security for operations planning

with significant wind power generation,” IEEE Trans. Power Systems,
vol. 23, no. 2, pp. 306–316, 2008.

[12] J. M. Morales, A. J. Conejo, and J. Pérez-Ruiz, “Economic valuation of
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